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Abstract
Learning is a key motivator behind information search behavior [8].
With the emergence of LLM-based chatbots, students are increas-
ingly turning to these tools as their primary resource for acquiring
knowledge. However, the transition from traditional resources like
textbooks and web searches raises concerns among educators. They
worry that these fully-automated LLMs might lead students to dele-
gate critical steps of search as learning. In this paper, we systemati-
cally uncover three main concerns from educators’ perspectives. In
response to these concerns, we conducted a mixed-methods study
with 92 university students to compare three learning sources with
different automation levels. Our results show that LLMs support
comprehensive understanding of key concepts without promoting
passive learning, though their effectiveness in knowledge retention
was limited. Additionally, we found that academic performance
impacted both learning outcomes and search patterns. Notably,
higher-competence learners engaged more deeply with content
through reading-intensive behaviors rather than relying on search
activities.

CCS Concepts
• Human-centered computing→ Interaction paradigms; In-
teractive systems and tools.
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1 INTRODUCTION
Real learning often begins beyond the classroom walls [59]. To
deepen their understanding or bridge knowledge gaps left in classes,
students embark on a journey of information-seeking behavior, re-
lying on tools such as books and the web to guide their search.
Commonly, students visit libraries or search the internet, engaging
in mainly four interacting stages: identifying gaps in their knowl-
edge, seeking relevant materials, evaluating and selecting pertinent
information, and synthesizing this knowledge to enhance their un-
derstanding [51, 67, 72]. This self-directed search and learning is
crucial because they allow students to explore topics in depth, per-
sonalize their learning experience, and develop the independence
and problem-solving skills necessary for both academic success and
lifelong learning [52].

However, as students progress into higher education, they need
to invest significantly more time and effort into the search-as-
learning process due to the increasing complexity and difficulty
of course material. This demand may overwhelm students who
struggle to dedicate extra time to learning. In response, with the
advancement of large language models (LLMs), students are in-
creasingly shifting their primary resources from traditional search
tools (such as textbooks and web search engines) to LLM-based
chatbots, attracted by their speed, convenience, and ease of use.
These automated tools reduce the cognitive burden on learners
by scaffolding or replacing specific steps in the search-as-learning
process, such as information retrieval, evaluation, and synthesis
for knowledge acquisition.

Despite this rising popularity and growth of LLM-based chat-
bots, educators have sincere concerns about incorporating LLMs
into learning. Many believe that for effective learning, students
must actively engage with the material by going through trial and
error and spending adequate time reflecting on it. They worry that
relying too much on the efficiency and convenience of LLMs could
lead to over-reliance, ultimately negatively affecting learning out-
comes [4, 6, 42, 62]. Consequently, some institutions have banned
the use of GPT or blocked access on campus, opting for alternatives
such as requiring handwritten assignments or solving problems
during class [54, 66]. Despite ongoing research demonstrating the
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educational potential of LLMs and their gradual introduction into
educational settings, these concerns persist.

Our study seeks to examine whether, as some educators cau-
tion, the delegation of search-as-learning processes to automated
tools is detrimental to the learning outcomes. First, we conducted
a survey analysis to understand educators’ perceptions of LLM-
based chatbots more accurately. From this analysis, we developed a
two-dimensional model that explains how specific factors of search
tools interact with educators’ expectations for successful search-
as-learning. The results revealed that educators have three major
concerns: (1) lack of reliability, (2) insufficient systematic organiza-
tion, and (3) weak cognitive engagement.

To investigate whether relying on LLM-based chatbots impacts
learning outcomes as educators concern, we conducted a mixed-
design empirical study with 92 students and compared three learn-
ing tools with varying degrees of automation: books, the web, and
ChatGPT. The results show that while the LLM-based chatbot did
not affect understanding key concepts, it was less effective than
books in supporting long-term retention of the concepts. Despite
a significant part of search-as-learning being automated by using
LLM-based chatbot, the results show that the students did not adopt
a passive learning approach. In addition to comparing the impact
of different degrees of automation on learning tools, we further
examined the relationship between students’ competence level and
their patterns in the search-as-learning process. We found that stu-
dents with higher academic performance achieved better learning
outcomes regardless of the tool used. We report distinct patterns
in the search and learning strategies between high-competence
students and those with lower competence.

Based on the findings, we discuss how LLM-based chatbots can
be effectively utilized during the search-as-learning process and
propose design implications to consider when developing future
educational tools. To summarize our contributions:

• We analyze educators’ concerns on automating the learning
process through a survey with over 75 educators and identi-
fied a two-dimensional in-depth model that shapes effective
search and learning.

• We systematically and structurally investigated the validity
of educators’ concerns of automating the process of search-
as-learning through a 3-by-3 within-subject experiment with
92 participants.

• We found that passive learning is influenced more by indi-
vidual student competence than by the learning tool itself,
and through behavioral analysis, we identified specific dif-
ferences in strategy patterns.

• Based on these findings, we offered suggestions and design
implications for how automated tools can be leveraged in
helping concept learning.

2 BACKGROUND AND RELATEDWORK
2.1 Search as Learning
Human information behavior [76] plays a crucial role in both our
work and everyday lives. According to information science litera-
ture and theory, information-seeking occurs when there is a need
for more information or knowledge reconstruction to resolve a
problematic situation [23], such as mitigating the uncertainty (or

gap), or addressing an anomalous state of knowledge in the context
of problem-solving and sense-making, which are integral to human
learning [7, 20, 34, 76]. Research in fields of information science
and education has conceptualized information-seeking as a learn-
ing process [37, 52], and learning as a key outcome of information
search and use [1, 33, 77].

To effectively engage in information-seeking and knowledge con-
struction, learners leverage search systems to navigate the following
steps: (i) query formulation, (ii) material collection, (iii) selection, and
(iv) organization [51, 67, 72]. For example, learners first recognize
their information needs and formulate their own queries. Next,
they search for and browse relevant information by examining the
returned search results. Afterwards, learners evaluate and select
content based on relevance and reliability, ultimately transform-
ing this information into meaningful knowledge. While textbooks
were traditionally used for this process, the advent of the internet
significantly broadened access to information, making web-based
learning prevalent [31, 32, 79]. More recently, LLM-based search
systems have emerged as a new, highly automated learning tool that
not only assists with information retrieval but also offers personal-
ized, adaptive responses that cater to individual academic pursuits.
This growing automation has the potential to optimize learning by
reducing the cognitive load involved in search, but the implications
of such systems on learning outcomes remain underexplored.

Previous research has characterized traditional search systems
as tools for learning and investigated their influence on learning
outcomes [8, 27, 64, 69, 71]. However, there is limited research on
the impact and potential of LLM-based search systems, especially
in comparison to traditional methods. The shift from manually
driven search processes to increasingly automated systems raises
important questions about the role of automation in search-as-
learning. This study aims to fill this gap by examining how LLM-
based search systems affect both learning gain and search behavior
in comparison to other levels of automation.

2.2 Large Language Models in Education
The advances of LLMs that leverage artificial intelligence and nat-
ural language processing technologies are rapidly transforming
educational environments. Due to their fluency, naturalness in pro-
ducing language, and versatility, students are increasingly turning
to LLMs for support in various academic tasks, including completing
homework, writing essays or academic reports, and even searching
for information and concepts covered in coursework [38, 50]. As a
result, there has been a growing body of research focused on de-
veloping LLM-based educational systems and demonstrating their
effectiveness [5, 35, 40, 70], with LLM chatbots beginning to be
adopted in real-world learning environments [30].

However, there remains considerable debate about the promises
and perils of using LLMs as educational tools, and these discussions
have sparked conflicts among educators [4, 6, 42, 54, 62].While prior
work has investigated educators’ concerns, these are often domain-
specific or overly general in nature. Furthermore, there is a lack of
empirical research examining how these concerns translate into
actual impacts on learning outcomes. Thus, we aim to investigate
educators’ concerns and explore how these translate into learning
outcomes through a structured study.
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Additionally, most research has concentrated on evaluating the
effectiveness of LLM-driven tools at higher levels of learning, such
as applying knowledge to tasks like problem-solving or creative ac-
tivities (e.g., essay writing, programming support, and solving math
problems) [5, 36, 39, 70]. Despite the importance of the foundational
phase of learning [48] — where learners integrate new informa-
tion into existing knowledge structures — this critical phase has
been underexplored in terms of how LLMs can effectively support
the development of a strong knowledge base. Therefore, our study
seeks to assess the role of LLMs in concept learning and knowledge
building through interaction with educational content.

2.3 Effective Information Searching Strategies
Educational and cognitive scientists have found that learners retain
knowledge better and can apply it across various contexts when
meaningful learning takes place. Ambrose et al. [2] introduced the
principles of meaningful learning, emphasizing that motivation,
metacognition, and self-regulation are critical factors in promot-
ing deep understanding. In the context of search as learning, to
foster meaningful learning beyond passive information consump-
tion, comprehensive search practices are proposed, characterized
by iterative, reflective, and integrative search sessions [65]. Further
research has shown that successful learners—those who achieve
higher levels of meaningful learning—exhibit distinct search pat-
terns during the learning process. A commonly observed trend is
that time spent reading pages (as opposed to searching) is associated
with deeper learning outcomes. For example, [17, 28] shows that
learners with high competence levels focus more on content pages,
while [78] found that factors such as document retention, query
length, and the average rank of selected results could be predictive
of domain expertise. Additionally, [16] found that eye-gaze patterns
could predict an individual’s level of domain expertise, based on
the cognitive effort associated with reading.

There has been increasing interest in studying how higher edu-
cation students’ information search and use behaviors affect and
support their learning [73, 74, 80]. For instance, [80] reports that
common patterns affecting learning outcomes include the reliance
on a rudimentary search heuristic, consistently using the same
simple search strategy regardless of the context, and habitual topic
switching after superficial skimming without evaluating all search
results. These growing interests at the intersection of searching and
learning highlight the importance of understanding how learning
occurs during the search process. However, while this correlation
between individual search patterns and learning outcomes is well-
studied in traditional search tools such as books or web search
engines, the distinct search patterns associated with emerging tools
like LLM-based chatbots have not yet been thoroughly explored.
Therefore, in this study, we conducted additional analyses (see Sec-
tion 6) to investigate whether differences in search patterns emerge
when using LLM-based chatbots in a search-as-learning context,
particularly across varying levels of learner competence, and to
identify any notable patterns that may arise.

3 EXPLORATORY STUDY
In the early phase of our research, we conducted a survey study
to explore educators’ perspectives of different learning tools with

varying levels of automation, including textbooks, search engines,
and LLM-based chatbots. For a systematic and structured inves-
tigation, we particularly focused on understanding the concerns
educators have about automation across four steps in the informa-
tion behavior process: (i) query formulation, (ii) material collection,
(iii) selection, and (iv) organization [51, 67, 72]. This was primarily
to help us develop a set of specific research questions, as listed in
Section 3.3.

Table 1: Demographic information of educators we inter-
viewed for the exploratory study

Variable n %

Position

University Professor 16 21.33
High School Teacher 34 46.67
University Teaching Assistant 20 26.67
Other 5 6.67

Age
(M=39.88, SD=10.97)

20-29 19 25.33
30-39 18 24
40-49 22 29.33
50+ 16 21.33

Gender
Male 48 64
Female 25 33.33
Not disclosed 2 2.67

GPT Usage
Have used 47 62.67
Haven’t used 28 37.33

Subject Area
STEM 43 57.33
HSS 25 33.33
Other 7 9.33

We recruited 75 educators with varying educational backgrounds
and experiences through snowball sampling and online advertising
(Table 1 shows details of the educators who participated in our
survey). In the survey, educators were given a scenario designed to
reflect a situation where a student wants to study independently
to achieve desired learning outcomes within a limited time frame.
“Dia, a senior university student, is taking 20 credits this semester.
Among them, your course is unfamiliar to her, but she is committed
to getting an A grade. Despite paying close attention in class, she
still doesn’t fully understand the materials, so she plans to allocate
additional time to study on her own.” Afterward, they were asked
to respond to the following two questions: (1) Among the options
of books, Google, and ChatGPT, what do you think are the most
effective learning sources (ranked in order), and why is each source
more effective compared to others? (2)Which steps in the information
behavior process should not be delegated to automation (ranked in
order), and why must the student perform these steps on their own?
Additionally, two open-ended questions were asked to educators
to describe their thoughts on pros and cons of using LLM-based
chatbots in a learning environment.

For quantitative analysis, we statistically examined the overall
rankings and explored the data from various demographic vari-
ables, including position, gender, age, subject area, and GPT usage
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Figure 1: Bar chart showing the average ranked ratings from educators’ survey responses. (1 indicates the highest rank). The
left plot (a) represents the ranking of three different learning sources. The right plot (b) shows the ranking of the steps in
the search-as-learning process where educators believe automation should not be applied. The symbol * indicates 𝑝 < .05, **
indicates 𝑝 < .01, and *** indicates 𝑝 < .001.

Figure 2: Summary of educators’ perspectives on three different learning sources, showing weighted average ranked ratings (1st
place = 3 points, 2nd place = 2 points, 3rd place = 1 point). The graphs are divided by various demographic variables: (a) position,
(b) gender, (c) age, (d) subject area, and (e) GPT usage. Regardless of the variable, the preference for LLM-based chatbots is
consistently low across all demographics..

(Figure 2). For qualitative analysis, three of the authors reviewed
the responses and conducted theoretical coding [56] to uncover
educators’ expectations for effective learning and the key factors
of learning sources that support these expectations (as shown in
Figure 3). Conflicts were resolved through iterative discussions, and
the three authors achieved inter-rater reliability of Krippendorff’s
alpha 0.89. The remainder of this section presents the findings iden-
tified from the survey analysis, and outlines our research questions
based on them.

3.1 Statistical Analysis
Through quantitative analysis, we found that the preference for
LLM-based chatbots is significantly lower than that for other learn-
ing sources, and none of the steps, except for (ii) collection, are
considered suitable for automation.

Disapproval of ChatGPT is widespread and consistent. We
present the comparative results in Figure 1(a) and Figure 2. Given
that our data consists of ordinal rankings, we performed Friedman’s
test [26] instead of ANOVA that is not appropriate due to its as-
sumptions about continuous data and homoscedasticity. Through a
Friedman test, we observed that a statistically significant difference
exists in ranked ratings across three learning sources (𝑋 2(2) = 21.62,
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Figure 3: Two-dimensional model illustrating educators’ expectations and related key factors for effective search-as-learning.
The expectation dimension is based on (1) discipline-specific competency, focusing on accuracy and comprehensive under-
standing, and (2) general competency, which includes metacognition, information literacy, and internalization, applicable
across disciplines. The model highlights learning source factors tied to these expectations, with the exception of information
accessibility, which is perceived as covering domain knowledge but ranked lower in priority compared to other factors.

p < 0.001). Post-hoc analysis using Conover tests [18] with Bonfer-
roni correction suggests that these differences exist between books
and LLM-based chatbots (p < 0.001) and search engines and LLM-
based chatbots (p < 0.001). These results show that compared to two
traditional learning sources with lower automation levels, LLM-
based chatbots are less preferred by educators. To further explore
whether these preferences varied across educators’ backgrounds
and experiences, we also conducted a multifaceted analysis of the
data by position, gender, age, subject area, and their GPT usage
experience. As shown in Figure 2, we found consistent patterns in
the perceptions of ChatGPT, regardless of the grouping method.
While a majority of educators selected books (52%; 39 of 75) and
Google (36%; 27 of 75) as the best learning sources, only 12% (9 of 75)
chose LLM-based chatbots. Thus, educators are hesitant to adopt
LLM-based chatbots in learning contexts and also perceive it as less
effective compared to existing learning tools. This highlights a gap
between the positive advancements and demonstrated potential of
LLM-powered educational tools and the cautious perceptions held
by educators.

Query formulation, selection, and organization are perceived
as steps that must be carried out by the learners themselves
without automation. Most educators (85%) are opposed to dele-
gating any part of the learning process to LLM-driven automation.
To discern their perspectives, we analyzed the ranked ratings with a
Friedman test and Bonferroni-corrected Conover post-hoc compar-
isons (Figure 1(b)). There were significant differences between (ii)
collection and the other steps — query formulation, selection, and
organization (p < 0.001, p < 0.001, p = 0.017, respectively). This find-
ing suggests that educators believe these three steps should remain
learner-driven, implying sufficient time and effort is required rather
than being fully automated. However, there was no consensus on

the relative importance among those steps, as perspectives varied,
reflecting personal differences.

3.2 Two-Dimensional Model Shaping Effective
Learning

To uncover the underlying reasons for the concerns of educators
with automated tools, we further conducted a qualitative analy-
sis. Based on survey responses from educators, we derived a two-
dimensional model through thematic coding, which comprises ed-
ucators’ expectations for learning and the key factors of sources
that help achieve these expectations (Figure 3). This structured
model explains how these dimensions interact to form an effective
learning process.

3.2.1 Educators’ Expectations: Developing Domain Knowledge and
Cognitive Skills.

Domain Knowledge: Regarding the disciplines, 23 out of 75 ed-
ucators expect students to build accurate domain knowledge first
and foremost. E27 said, “knowing the precise keywords is essential
for expanding knowledge,” and E8 added, “Even if it takes longer,
focusing on accurately grasping concepts is more important than
quick acquisition.” Besides, E37 and E43 emphasized that acquiring
correct information is crucial, especially during the early stages
of learning: “Unless students have developed enough foundational
knowledge to identify errors or biases, they should not be allowed to
use automated educational tools.” Educators (E7, E9, E15, E20, E41,
E46, and E48) also prioritize that students construct their knowl-
edge through comprehensive coverage, when all the fundamental
content is thoroughly addressed. Notably, none of them placed
importance on the quantity of knowledge. Overall, we found that
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Figure 4: Overview of the SAL (Search-as-Learning) logger, consisting of two interface components: (a) the note panel and (b)
the browser window. Additionally, the Chrome extension plug-in (c) was equipped with pre-selected textbooks (e.g., [14, 41, 61]
for each module) for each module in PDF format. In the note panel, participants initially input their experimental information
(ID, session, source, and module) and then begin a session with the pre-assigned learning source and module pair for the day.
First, participants add a new note and write their query in the Question section. As they engage in self-guided search and
learning on the browser, they can drag relevant information or organize it into their own words in the memo section. Once
they find an answer to their query, participants write the answer in the note and then submit it. They can also add new notes
by clicking the ’+’ button. (d) illustrates the JSON format in which these logs are sent to the server.

the primary competence expected of learners in the course is the
accurate and comprehensive construction of knowledge.

Cognitive Skills: On the other hand, we discovered that a majority
of them (52%) not only focus on discipline mastery but also expect
students to enhance their cognitive skills. This is because, as noted
by educators (E7, E13, E35, E68, and E72), these skills are transfer-
able beyond the course and applicable across different disciplines
and learning contexts. Specifically, educators emphasize three key
abilities that are directly involved in the information-seeking and
knowledge-building process: recognizing and addressing gaps in
their understanding (metacognition), efficiently searching for and
critically assessing large volumes of information (information liter-
acy), and systematically integrating and embedding new knowledge
(internalization).

3.2.2 Factors to Build Strong Domain Knowledge: Reliability, Sys-
tematic Organization, and Information Accessibility.

Reliability: Educators stated that the accuracy of knowledge
depends on the reliability of learning sources. Fourteen of them af-
firmed that textbooks are a highly reliable source. For example, E13
and E68 explained that books compile the accumulated knowledge
of experts who are thoroughly trained in their fields and undergo
multiple iterations of refinement through rigorous review processes
conducted by top professionals in the domain. Additionally, E37
said, “GPT learns from processed web content, and web content is

derived from books. Therefore, books, as the original source of data,
are the most reliable.” Meanwhile, educators (E2, E63, and E70)
also regard Google as a reliable tool because of its high-quality
materials, such as publications, well-written posts by experts, and
Wikipedia. In contrast, educators (14 of 75) raise concerns about
the reliability of ChatGPT’s responses, citing issues such as
hallucinations and misinformation [10, 46, 53, 75].

Systematic Organization: Educators described that systematically
organized content from educational resources can provide learn-
ers with comprehensive coverage of domain knowledge. Books
are considered the most effective tool for guiding learners toward
structured and inclusive knowledge-building. Specifically, educa-
tors (E7, E15, E20, and E21) said that, compared to other tools, books
provide content in a systematically organized way: (1) sequential
structuring from basic to advanced concepts, and (2) logical progres-
sion within topics, such as definitions, explanations, examples, and
exercises. Whereas, educators expressed contradictory thoughts
about ChatGPT. For example, while E41 and E48 said that “ChatGPT
readily categorizes information and provides responses in a structured
format,” E7 commented that “ChatGPT is proficient at answering
the questions users ask, but its responses often lack continuity and
coherence, coming across as disjointed and isolated rather than part
of an organic flow and sequential line of reasoning.” This reveals that
educators have conflicting views on whether ChatGPT serves
as a systematic tool for supporting comprehensive coverage.
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Figure 5: Concept maps on the Sampling module. (a) Collective concept map created by merging the concept maps of all
92 participants for concept map evaluation. (b) Example participant concept maps from both the high-competence group
(left, participant P70) and the low-competence group (right, participant P77), as analyzed in Section 6. Each node represents
concepts learned during the study phase, and edges represent connections made between these concepts through explanations.
Despite differences in group competence, the concept maps of P70 and P77 show similar structural patterns in their concept
representations.

Information Accessibility:Nineteen of the educators valuedGoogle
as an effective learning tool because of its efficiency in accessing in-
formation. For example, E50 and E59 said, “With the ubiquity of the
internet, accessing and searching for information has become much
easier and faster, which is likely to be especially useful for students.”
Moreover, educators appreciate the ease of access to a wide range of
information, from the latest research to posts grounded in human
understanding (E3, E36, and E63), along with various modalities
beyond text, such as videos and illustrative images (E75). We found
that while educators acknowledge ChatGPT’s efficient accessibility,
they do not encourage its use. This is because educators prioritize
the reliability of the source over mere accessibility.

3.2.3 Factors believed to Enhance Cognitive Skills: Cognitive En-
gagement.

Out of 75 educators, 64 emphasized that certain phases of the
search and learning process must be carried out by students them-
selves, as only through active and repeated participation can cogni-
tive skills be developed and honed. For example, E46 said, “Without
dedicating sufficient time and effort to self-reflection and independent
thinking, learning cannot occur.” E26 and E35 also said that “By
engaging in trial and error while evaluating materials and selecting
the most relevant information, students acquire valuable know-how
in information-seeking strategies.” Additionally, E68 remarked that
“While ChatGPT is a useful tool, it may cause students to passively ac-
cept information. The ability to judge and filter valuable information
from the irrelevant remains crucial, regardless of AI advancements.
Therefore, students should be responsible for identifying key points,
selecting relevant information, and organizing it.” Unlike books or
Google, which necessitate active participation in the learning pro-
cess, ChatGPT has the potential to offload cognitive effort,
leading to passive information consumption. This concern
helps explain why most educators view books as the most effective

tool, despite the significant time and energy they require, and why
educators remain cautious about the implications of LLM-based
chatbots.

3.3 Goals and Research Questions
Collectively, we identified three key concerns raised by educators
regarding the integration of LLM-based chatbots into educational
settings: (1) lack of reliability, (2) insufficient systematic organiza-
tion, which educators worry may undermine the development of
well-structured domain knowledge, and (3) week cognitive engage-
ment, which they believe could impede the cultivation of essential
cognitive skills. Given these concerns, the overarching goal of our
study is to explore the potential impact of these highly automated
LLM-based chatbots on learning outcomes. Specifically, we aim to
determine whether their use might negatively influence the quality
and effectiveness of learning. To address these goals, we formulated
the following research questions:

• RQ1. Does learning with LLM-based chatbots result in less
accurate and less comprehensive understanding of do-
main knowledge compared to traditional learning sources?

• RQ2. Does learning with LLM-based chatbots encourage
learners to spend less cognitive effort, leading to passive
information consumption?

4 METHODOLOGY
To investigate the gaps between educators’ concerns and the actual
effects of automation in search-as-learning contexts, we conducted
an empirical study with 92 university students. The study aimed
to observe the impact of different levels of automated tools on
information-seeking behavior. An overview of the study procedure
is illustrated in Figure 6.
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Figure 6: Procedure of the mixed-method within-subject
study with 92 students.

4.1 Study Design
In this work, we designed a counterbalanced mixed-method study
that incorporates elements of both within-subjects and between-
subjects designs. The study consisted of three sessions, each con-
ducted on a separate day. In the between-subjects component, we
compared learning outcomes across three types of sources: books
(representing non-automated searching), web search engines (of-
fering partial automation), and LLM-based chatbots (capable of
fully automated searching). In the within-subjects component, each
participant used a different learning sources in each session, thus
experiencing all three conditions over the course of the study. The
study conditions were defined as follows:

• Condition 1: Book. To ensure a uniform comparison with
the other experimental conditions, we simulated a digital
reading environment by providing textbooks in PDF for-
mat. In order to replicate the experience of reading physical
textbooks, digital features such as keyword search were dis-
abled, requiring participants to manually navigate and read
through the material.

• Condition 2: Web. Participants use the web search engine
to seek information by entering relevant keywords and ac-
cessing content on various websites. They are restricted to
using Google, the most widely used and familiar search en-
gine among participants, to ensure consistency in the data
and insights gathered from our analysis.

• Condition 3: ChatGPT. Participants are restricted to use
ChatGPT as LLM-based chatbots to search for information
through a question-answering form. We selected ChatGPT-
4o [60] because of its enhanced speed and multimodal ca-
pabilities, allowing efficient delivery of both text and visual
materials.

To eliminate potential learning effects across sessions, we se-
lected three distinct university-level modules from STEM subjects:
(a) The Solar System (Astronomy), (b) Sampling (Statistical Mathe-
matics), and (c) Database Management Systems (Computer Science).
These modules were randomly assigned to the three learning tools,
ensuring that each tool was paired with a different module across
the three sessions. In addition, we defined three sequential learning
objectives (LOs) for each session, which participants were required
to meet. These objectives were aligned with the three levels of
Bloom’s taxonomy (Understand, Apply, Analyze) [9, 48]. A detailed
summary of the learning objectives (LOs) and the rationale for
selecting these levels of Bloom’s taxonomy is provided in the Ap-
pendix A.

4.2 Task Design and Setup
To address the research questions outlined in Section 3.3, the data
collection and evaluation was conducted in two phases. The first

phase focused on assessing participants’ knowledge comprehen-
sion gained from each learning source (RQ1). The second phase
examined their learning activities and experiences throughout the
sessions (RQ2).

4.2.1 Measuring knowledge Accuracy and Comprehensiveness. Ac-
cording to the model of comprehension [15, 43–45], learners con-
struct and integrate knowledge through multiple levels of mental
representation. Specifically, learners first extract key concepts from
the materials into working memory, then formulate propositions
from those concepts. Finally, they integrate these propositions into
a coherent mental model. Based on this, we designed two learning
tasks to evaluate participants’ knowledge comprehension along
three hierarchical levels — concepts, connections, and the develop-
ment of a coherent mental model.

• Concept Map Drawing: Concept maps are one of the most
widely used tools for approximating learners’ understand-
ing within a particular domain or course material [13]. In
this study, we employed Novakian concept mapping [12], a
method often used to capture a learner’s mental model by
representing a network of connections between related con-
cepts [19, 55, 57, 58, 63]. For example, participants map out
their understanding of the Database Management Systems
(DBMS) by including MySQL, Oracle, and MongoDB, using
the relationship “example of” to logically connect them.

• Post and Retention Test: To assess the accurate and persis-
tent construction of a mental model for essential knowledge
aligned with our LOs, participants perform an immediate
post-test after each session and a retention test two weeks
later. The post-tests consist of a set of nine multiple-choice
questions (MCQs), one of the most commonly used forms of
assessment [11, 68]. The retention test consists of the same
set of nine MCQs, with both the question order and the op-
tions randomized from the post-test. We set AI-generated
(GPT) MCQs for the tests, as prior research has shown that
LLMs can effectively generate high-quality MCQs that are
well-aligned with specific LOs and comparable in quality
to those crafted by experts [21, 22]. The process of auto-
matic MCQ generation is detailed in Appendix B, including
our prompt engineering, iterative quality evaluations, and
examples.

4.2.2 Interface for Learning Activity Logging. The SAL logger was
instrumented as the apparatus, shown in Figure 5. This system
records timestamped user interactions within the browser (e.g.,
keyboard input, mouse clicks, and dragging) to analyze learner
activeness and behavior. We developed the SAL logger as a Chrome
extension using HTML and JavaScript. It has a client-server archi-
tecture that enables authentication, stores search histories, collects
learning logs, and provides study materials in PDF format. The
server is implemented using Node.js and stores data in JSON for-
mat.

The log data collected by the system consists of the following
key attributes: participant information (ID, session, assigned source,
and module), timestamp, event type, and content. The event type
field categorizes interactions, including Info (used to track when ex-
perimental information is submitted), Drag (to track which content
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Figure 7: Results for the average concept map evaluation across five metrics. Significant differences between the book and GPT
groups are observed only in the number of nodes and number of edges metrics. The symbol * indicates 𝑝 < .05, ** indicates
𝑝 < .01, and *** indicates 𝑝 < .001.

Figure 8: Overall results for the post-tests and retention-tests, presented both by individual modules and as an overall average.
(a) The post-test results show significant differences between the book and GPT groups, as well as between the book and web
groups, in the solar system and DBMS modules, as well as in the overall average, with the exception of the sampling module. (b)
In the retention test, significant differences between the book and GPT groups are observed only in the overall average. This
suggests that books have an advantage over automated tools in terms of retention. The symbol * indicates 𝑝 < .05, ** indicates
𝑝 < .01, and *** indicates 𝑝 < .001.

was dragged), Write (to log entries made in the note panel), and
Web_url (to capture website access when the source is web-based).
The content field contains data specific to each event type, such as
dragged text for a Drag event or a written note for aWrite event.

4.3 Data Collection and Analysis
To analyze participants’ search and learning patterns, the SAL log-
ger automatically collected keyboard and mouse events, along with
the content they interacted with (e.g., dragged text or clicked links)
throughout the session, as described in Section 4.2.2. Additionally,
the entire experimental process was video recorded to capture par-
ticipants’ real-time interactions with the system. Following this, par-
ticipants’ concept maps, created using a pen-and-paper approach,
were collected and digitized using the NetworkX Python library

[29] for quantitative analysis. At the end of the study, a post-test and
survey were administered, which included open-ended question-
naires and Likert scale questions regarding participants’ perceptions
and experiences with the three different learning sources, learning
gains, and insights for future design implications of LLM-powered
tools for learning. Two weeks later, a retention test was conducted.

To quantitatively measure participants’ learning gain, we ana-
lyze both the digitized concept maps and the post- and retention
test results (scaled from 0 to 9). For assessing the concept maps
based on content and structure, we employed five network analysis
metrics: number of nodes, number of edges, deepest hierarchy level,
node degree, and edge consensus. The first three metrics are simple
count-based metrics present in the maps, indicating the number of
acquired concepts, the connections made between them, and the
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depth of knowledge structuring. While these traditional metrics are
commonly used in the literature to predict an individual learner’s
understanding, they have limitations in assessing correctness and
comprehensiveness. To supplement this, we incorporated two ad-
ditional metrics — node degree and edge consensus — based on a
group consensus approach, comparing an individual learner’s con-
formity to the larger group’s collective understanding [25]. Node
degree measures the number of edges connected to a node, while
edge consensus evaluates the number of overlapping connections
made by other learners. To apply these metrics, we merged all
participants’ maps (see Figure 6(a)), and measured how accurately
individuals identified key nodes and edges, as determined by their
peers. Previous research supports the use of these metrics, show-
ing that a group’s collective mental model can approximate that
of an expert [3, 24, 47, 49]. Furthermore, to assess the degree of
engagement throughout the sessions, we measured the number
of submitted notes, as well as the average time and number of
cognitive activities (i.e.,searching, reading, dragging, navigating,
and note-taking) per cycle in the search-as-learning process, based
on the collected logs with timestamps. We employed the Bonfer-
roni correction for all statistical tests to avoid potential multiple
comparison problems.

4.4 Particpants and Procedure
4.4.1 Participants. We recruited 92 participants from our univer-
sity mailing lists and through online advertisements on social media
(age=21±3, 46 males and 46 females). To control for prior knowledge,
we recruited participants exclusively from our institute, where the
modules used in our study are not part of the standard curriculum.
We also asked participants to complete a pre-test consisting of three
MCQs at the ’remember’ level, which aligns well with assessing
prior knowledge by requiring participants to retrieve relevant in-
formation from long-term memory [48]. We excluded applicants
who scored three on the pre-test. The scores of participants were
M=0.55, SD=0.68. Participants were randomly assigned to exper-
imental conditions, and no significant differences were observed
between the conditions in the pre-test (Kruskal-Wallis H=0.675,
p=0.7).

4.4.2 Procedure. The study was conducted in a controlled setting,
either in person or online. The study lasted for three days with
90-minute sessions each day, followed by a 30-minute session two
weeks later. Participants received 66,000 KRW ( i.e., approximately
49.2 USD) as compensation. Additionally, those whose test results
ranked in the top 10% were offered a 20% incentive to further moti-
vate their performance. The study protocol was approved by our
institution’s IRB, and all study materials used in the study were
translated into Korean to prevent any language barriers and reduce
unnecessary cognitive load.

The study procedure was organized into five phases (Figure 6).
During the study phase, participants first installed the SAL log-
ger on the Chrome browser. They were then asked to study the
assigned learning objectives using a designated learning source. Par-
ticipants followed a structured study process designed to track their
search-as-learning behaviors. First, participants were instructed to
formulate their own queries if they identified any knowledge gaps
or internal questions that arose during the study to achieve the LOs.

These questions were recorded in the question section of the note
panel. To answer the query, participants conducted information
searches using the learning source through the browser window.
Participants were guided to move the highlighted cursor along with
their gaze while browsing, and were asked to drag sections of text
they focused on. Any key insights or pertinent information dis-
covered during the search could be transferred or restructured in
the memo section of the note panel for further clarification. Once
participants felt that they had resolved their knowledge gap, they
were asked to submit their answers in the answer section of the
panel. After submitting the completed note, participants added a
new note to the panel and repeated the process throughout the
study phase. Previously submitted notes could be modified and
resubmitted later.

Next, participants were given 5 minutes to review and reflect
on their notes. Afterward, they moved on to the concept mapping
phase, which lasted 20 minutes. During this phase, participants
hand-drew labeled nodes to represent concepts and linked them to
illustrate the relationships between the concepts they had acquired
during the session. Following this, participants entered the test
phase, where they had 15 minutes to complete a post-test consist-
ing of 9 MCQs related to the module. After completing the test,
participants used an online form to answer a post-survey, which
included several questions about their experience and the effective-
ness of each search tool for learning. This process was repeated
over three consecutive days, and two weeks later, participants were
asked to complete a 30-min retention test.

5 RESULTS
Overall, a comparative analysis of the outcomes from the three ex-
perimental groups (Book vs. Web vs. GPT) reveals that LLM-based
chatbots were competitive at lower levels of understanding (i.e.,
formation of concepts and connections) and outperformed books
in helping learners build coherent mental models. However, LLMs
led to reduced retention of information compared to books (RQ1).
Additionally, our results show there were no significant differences
in the average cognitive effort expended per search-as-learning cy-
cle among different learning sources (RQ2). The following outlines
our findings for each research question, along with participants’
perspectives and insights directly comparing their experiences with
each learning source.

5.1 RQ1: Accuracy and Comprehensive
Coverage in Knowledge Building

To investigate whether LLM-based chatbots hinder learners’ un-
derstanding in terms of accuracy and comprehensive coverage, we
first analyzed 276 concept maps (92 participants x 3 conditions) to
assess fundamental level of understanding, which indicates how
well learners identified and connected key concepts aligned with
the given learning objectives (section 5.1.1). Next, we analyzed
post-test and two-week-after retention test scores to assess a more
advanced level of understanding (section 5.1.2), focusing on how
well the knowledge was retained and applied within their mental
models. Detailed module-level results are provided in Appendix C.
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Figure 9: Average number of activity logs per condition, collected using the SAL logger during the 40-minute study phase. The
time axis is normalized to 40 minutes for all participants. This graph shows the overall activeness across the three conditions.
The GPT group generated the highest number of event logs, followed by the Web group, while the Book group recorded the
fewest activity logs on average. Notably, the GPT and Web groups exhibited a slight upward trend in activeness over time,
whereas the Book group showed a decreasing trend in activity. (For accurate activeness analysis, only the first 35 minutes of
data are displayed, as participants were informed to conclude their study five minutes before the end of the session.

Figure 10: Average number of completed notes submitted by participants during the 40-minute study phase for each module,
indicating the number of search-as-learning cycles completed. Post-hoc test results reveal a significant difference between the
Book and GPT groups in the DBMS module. The symbol * indicates 𝑝 < .05, ** indicates 𝑝 < .01, and *** indicates 𝑝 < .001.

5.1.1 Concept Map Evaluation. The results (Figure 7) show that
the average number of nodes was significantly greater in the GPT
group compared to the book group (GPT: M=23.76, SD=10.00; Book:
M=18.67, SD=7.71; p<0.001). Similarly, the average number of edges
was also significantly greater in the GPT group (GPT: M=32.83,
SD=17.45; Book: M=25.69, SD=15.42; p<0.05). These results indicate
that participants in the GPT group acquired more concepts and
connections than those using books, and this trend was consistent
across all three modules. To further understand how participants
structured their acquired knowledge, we analyzed the structures of
their concept maps. On average, there were no significant differ-
ences in the depth of maps across the three groups (p>0.1). However,
at the module level, the GPT group built significantly deeper maps
in the DBMS module compared to the book group (GPT: M=4.8,

Book: M=4; p<0.05). Additionally, no meaningful differences were
found in node degree or edge consensus (p>0.1). Although none
of the results reached statistical significance when broken down
by module, we observed that in the DBMS module, participants
in the GPT and web groups identified more correct edges than
those in the book group. Taken together, these results suggest that
LLM-based chatbots help learners identify fundamental concepts
and accurately connect them, comparable to traditional learning
sources. Despite acquiring more concepts and edges in a given time,
learners using GPT structured and understood these relationships
just as effectively.

5.1.2 Post-Test and Retention-Test Redsults. As shown in Figure
8, immediate post-test scores were significantly lower in the book
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Table 2: Demographic information of participants in high
group and low group based on their GPA.

High Group Low Group

PID Gender Age GPA PID Gender Age GPA
P18 F 25 4.30 P23 M 26 2.90
P28 M 23 3.90 P47 M 18 2.70
P50 F 22 3.90 P48 F 22 3.00
P53 M 28 3.99 P59 M 19 2.91
P65 F 22 4.03 P74 F 21 2.93
P66 M 28 4.22 P77 M 25 2.70
P70 M 20 4.14 P80 M 15 2.88
P85 M 20 4.00

group compared to both the web group and the GPT group. No-
tably, these significant differences were observed in the astronomy
and DBMS modules. This indicates that participants using books
fell short in achieving equivalent test scores compared to the two
higher levels of automated learning tools. We hypothesize that the
non-automated nature of books may have hindered participants
from building strong, coherent mental models within the limited
session time, as the manual process of searching and learning was
less efficient compared to the automated, streamlined approaches
offered by the web and GPT tools.

In contrast, the two-week retention tests show no significant
difference between the book and web groups, and the average dif-
ference between the book and GPT groups was reduced compared
to the post-test results. In fact, when looking at the retention test
scores broken down by module, we found no remarkable differ-
ences among the three groups. This suggests that while the book
group initially struggled to achieve high scores, they may have
retained the learned knowledge better over time, indicating an ad-
vantage in retention compared to the more automated learning
sources. Therefore, while LLM-based chatbots may be less effec-
tive than books in terms of retention, they do not hinder learners’
ability to accurately and comprehensively construct understanding
in self-directed search environments. This suggests that, despite
concerns about reliability and systematic organization, these highly
automated tools did not appear to negatively impact knowledge
comprehension, addressing our RQ1.

5.2 RQ2: Assessing Degree of Cognitive
Engagement

To investigate whether LLM-based chatbots promote passive in-
formation consumption rather than active engagement into the
search-and-learning process, we first refined 12,287 activity logs
collected throughout the study. From this data, we analyzed partic-
ipants’ activeness levels during information-seeking behaviors and
compared the number of completed notes. By understanding these
two factors together, we aimed to assess the degree of cognitive
engagement across different learning tools.

5.2.1 Assessing Activeness Levels. To assess activeness during the
sessions, we quantitatively analyzed the average number of cogni-
tive activities such as searching, navigating, dragging, clicking and

note-taking for each participant over time (Figure 9). Surprisingly,
contrary to educators’ expectations, the results showed that the
GPT group exhibited the highest level of activeness throughout
the sessions, followed by the web group, and lastly the book group.
Additionally, the trendline for participants using books showed a
noticeable decline in activeness as the session progressed. In con-
trast, the activeness levels for participants using both GPT and web
search engines remained steady, indicating sustained engagement
throughout the session. From this observation, we suggest that the
effort required to manually complete all steps with books may have
caused participants to fatigue more quickly, resulting in decreased
activeness in the latter part of the session. This contrasts with the
GPT and web conditions, where automated features likely reduced
the cognitive burden and helped participants maintain their engage-
ment over time. However, these results alone cannot fully address
our RQ2, as they may not necessarily reflect active cognitive en-
gagement. Therefore, we further analyzed the number of completed
notes within each session to assess the time and effort invested in
each search-as-learning cycle. By examining the quantity of notes
relative to the activeness level, we aimed to determine whether
participants were deeply engaged in the learning process or merely
exhibiting frequent interactions without substantial cognitive effort,
as discussed in the next subsection.

5.2.2 Comparison of completed notes. To investigate whether the
number of completed notes differed between learning sources, we
performed one-way ANOVA tests (Figure 10). The results showed
no significant main effect of learning sources for the solar system
module (F(2,89) = 3.041, p = 0.053) or the sampling module (F(2,89)
= 0.867, p = 0.424), but a significant difference was found for the
DBMS module (F(2,89)=4.611, p=0.012, η2=0.094). However, despite
GPT’s time-efficiency, no remarkable differences in the number of
notes completed were observed compared to other sources. Simi-
larly, the search engine, a partially automated tool, did not show
a meaningful difference from the book group. This suggests that
participants engaged in each search-as-learning cycle with similar
time and effort, regardless of the level of automation in the learning
source. Notably, although the activeness level for LLM-based chat-
bots was higher than for other sources, the number of completed
notes did not differ significantly. This challenges educators’ con-
cerns that fully automated tools like GPT may encourage passive
learning approaches. Therefore, our findings support RQ2, suggest-
ing that LLMs do not reduce the cognitive effort invested compared
to traditional sources.

5.3 Summary
Through the study, we found that LLM-based chatbots did not
hinder understanding of domain knowledge; in fact, participants
absorbed more content overall. Moreover, automation levels did
not deactivate participants’ search and learning behaviors. On the
contrary, using non-automated tools throughout the entire process
may lead to quicker exhaustion. Nonetheless, this self-navigated
tool like books proved effective in promoting long-term memory.
Given the lack of significant differences in learning outcomes across
the tools, we conducted additional analysis in the next section on
LLM-based search-as-learning patterns, focusing on participants’
GPA. We explore whether academic performance influenced the
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Table 3: Summary of LLM-based search-as-learning strategies. Based on [73, 74, 80], we defined search-as-learning patterns into
read-related and write-related strategies. After analyzing 17 video recordings, the strategies were categorized through three
iterations of behavior coding performed by four authors. These strategies capture the key behaviors observed in participants
during the search and learning process, highlighting how learners interact with content through reading (TR, RV, SN) and
writing (PH, TP, CP).

Mode Strategy Description Observation

Read

Thorough Reading
(TR)

Engaging deeply with the material Dragging the mouse to highlight sections of
text while reading from start to finish

Revisiting
(RV)

Returning to the content Reviewing a previous response received

Scanning
(SN)

The simple act of reading Reading content without mouse interaction

Write

Paraphrasing
(PH)

Process of restating text Organizing and summarizing self-learned
content

Typing
(TP)

Typing the content without
modifications

Typing the content as it was found, following
along while reading without making any

modifications.

Copy-Pasting
(CP)

Simply copying and pasting Selecting and copying the content by dragging
without making any modifications

effectiveness of each learning tool. This allowed us to identify
potential differences between low-GPA and high-GPA learners.

6 EXPLORING THE IMPACT OF STUDENTS’
COMPETENCE ON LLM-BASED
SEARCH-AS-LEARNING

A rich body of research has shown the correlations between stu-
dents’ search strategies and their learning outcomes [16, 17, 28,
73, 74, 78, 80]. Drawing from the literature, we hypothesize that
students with higher academic performance are likely to use more
effective strategies that foster meaningful learning [2] regardless
of the automation level of tools in search-as-learning contexts. To
further investigate this, we conducted an additional in-depth analy-
sis by quantitatively analyzing participants’ learning outcomes and
video recordings. This investigation revealed two key findings: (1)
a correlation between students’ competence and their knowledge
acquisition, and (2) distinct search-as-learning strategies across
different competence levels. These results provide valuable insights
into how LLM-based search tools can be designed to support effec-
tive and meaningful learning, particularly for students with varying
levels of competence.

6.1 Higher-Competence Students Exhibit
Deeper Cognitive Investment and Retention

To examine the correlation between students’ competence levels
(as reflected by GPA) and learning outcomes, we performed a Pear-
son correlation test. While no significant correlations were found
between GPA and concept map evaluations across all five metrics
for knowledge comprehension, we observed a significant correla-
tion between academic performance and post- and retention-test

results, which represent higher-order understanding.This suggests
that while basic understanding did not vary significantly by GPA,
students with higher academic performance were more likely to
develop and retain a cohesive mental model.

To further explore students’ cognitive engagement, we analyzed
correlation of activeness level with GPA. The results indicated no
significant association between them. However, we found a notable
correlation between GPA and the number of completed notes, sug-
gesting that higher-performing students tended to invest more time
and effort into each search-as-learning cycle. These findings imply
that competence level influences search strategies, specifically in
how actively students engage in learning tasks, potentially leading
to more comprehensive understanding of domain knowledge. To
better capture these patterns, we divided participants into high-
and low-performance groups and analyzed their behaviors through
video recordings, which will be detailed in the next section.

6.2 High-Competence Students Prioritize Deep
Reading, While Low-Competence Focus on
Task Completion

To explore the differences in information searching behavior pat-
terns based on students’ competence, we divided the participants
into two groups: the high group (GPA ≥ 4.0) and the low group
(GPA ≤ 3.1). The demographics of each group are presented in
Table 2. Drawing from strategies reported in prior research on
shaping meaningful learning, four of the authors conducted two
rounds of iterations analyzing 17 videos of our participants engag-
ing in search and learning using large language models (LLMs).
Through this process, we identified six common strategies: three
related to reading and three related to writing (see Table 3). We
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Figure 11: Search-as-learning patterns of participants in both high-competence (N=8) and low-competence (N=7) groups, derived
from video recording analysis. The top portion illustrates participant strategies over the 40-minute experimental session,
annotated with three read-related strategies (TR, RV, SN) and three write-related strategies (PH, TP, CP), as defined by four
authors. Each block represents the occurrence of these strategies during the study phase.The bottom box plots depict how
frequently each group employed these strategies over the course of the 40-minute session, expressed as a percentage of the
total time, except for CP, which is shown as the number of occurrences since it is measured in seconds. In the Read mode (left
side), the high-competence group frequently utilized TR and RV strategies, while the low-competence group predominantly
used SN. In the Write mode (right side), the low-competence group spent more time on writing tasks (e.g., formulating queries,
writing answers, and taking memos) compared to the high-competence group. Overall, the low-competence group maintained
a consistent read-write process throughout the session, while the high-competence group increasingly focused on reading
strategies as the session progressed.

used these strategies to code the videos, resolving any conflicts
through discussion.

As shown in Figure 11, we observed distinct patterns between the
groups in terms of both reading and writing behaviors. First, with
regard to reading, the high group dedicated significantly more time
to thorough reading (TR) and revisiting (RV), while the low group
primarily focused on scanning. Additionally, as the sessions pro-
gressed, the high group displayed an increasingly reading-intensive
pattern. Next, in terms of writing, the low group spent slightly
more time on paraphrasing (PH) and typing (TP). However, we also
found that copy-pasting (CP) occurred more frequently in the low
group. Overall, the high group demonstrated a strategic approach
to time allocation. Early in the session, they spent considerable time
on information searching, synthesizing, and note-taking, but later
shifted their focus to thoroughly reading and revisiting previous
content to deepen their understanding. In contrast, the low group
consistently alternated between reading and writing throughout
the session, primarily concentrating on task completion through
note-taking.

These findings suggest that the high group prioritizes internal
processes during search as learning, whereas the low group seems

to perceive the externalization of knowledge as the primary dri-
ver of learning gains. Synthetically, we propose design guidelines
aimed at leveraging the strategies observed in the high group as
benchmarks, while implementing guardrails to support the low
group in effectively using LLM-based systems as tools for learning
in Section 7.2.

7 DISCUSSION
7.1 The Promise of LLMs as a Starting Point for

Search as Learning
Our study showed that LLM-based learning enabled learners to
acquire a greater number of key concepts and their connections
compared to other learning sources, without compromising the ac-
curacy of their knowledge. Furthermore, we found that LLM-based
chatbots effectively scaffolded comprehensive understanding of
domain knowledge within a limited time frame. This suggests that
LLMs are particularly effective for quickly grasping new concepts
in a short period of time. However, in terms of retention, traditional
books outperformed LLMs and search engines. This may be be-
cause the cognitive processes involved in reading books are more
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self-guided, and the structure is designed in a way that experts
in the field believe is optimal for learning. While this high cogni-
tive load can enhance retention, it can also lead to fatigue and re-
duced engagement, especially when compared to more automated
tools. Based on these findings, we propose a learning approach
where learners, particularly those lacking background knowledge,
begin with LLMs to efficiently grasp key concepts and build an
initial overview. Once this foundation is established, transitioning
to book-based learning can further support retention and deepen
understanding. This method makes engaging with books easier
than starting from a point of unfamiliarity, ultimately maximizing
learning outcomes. Several participants supported this approach
with their feedback. Participant (P11) noted, "There were too many
sections to look through, making it difficult," while another (P23)
commented, "I felt tired and frustrated by the process." Additionally,
one participant (P65) emphasized the benefits of starting with GPT,
stating, "Using GPT in the early stages of learning was helpful be-
cause it provided answers even to abstract questions, which made
it easier to navigate the material."

7.2 Design Implications Derived from Learner
Competence Levels

Based on our analysis of search strategies, we found distinct inter-
action patterns between high-performing and lower-performing
learners. The high-competence group increasingly focused on read-
ing behaviors as the learning session progressed, while the low-
competence group maintained a consistent pattern of alternating
between writing and reading throughout each search-as-learning
cycle. While it may be challenging for users to consciously adopt
these patterns on their own due to the cognitive burden, we pro-
pose design implications for future LLM-based search systems that
intuitively guide users to emulate the search behaviors of higher-
competence learners. These systems would help users follow effec-
tive strategies naturally, while discouraging less productive behav-
iors observed in the lower-competence group. The design implica-
tions are as follows.

7.2.1 Support active reading. To encourage learners to invest time
and effort into thoroughly reading materials, knowledge external-
ization strategies are a promising approach. Learning from text is
inherently constructive, but as texts become more complex, build-
ing a cohesive mental model becomes increasingly challenging.
Existing tools often promote passive reading, offering little sup-
port for engaging deeply with content. However, strategies such
as diagramming, note-taking, and providing effective markdown
formatting can facilitate this challenging process, helping learners
actively organize and retain information. Therefore, we propose de-
signing tools that foster more interactive engagement with content.
These tools should allow users to modify the material directly, such
as by annotating and creating diagrams from the searched content,
which could enhance retention and comprehension.

7.2.2 Navigate learning histories. A commonly observed pattern
in the lower-competence group is their tendency to initiate new
interactions with LLMs rather than referring back to previously
searched results. However, recalling previous interactions is a valu-
able strategy for enhancing retention and comprehension. The

challenge lies in the cognitive effort required to remember past
interactions, scroll back through long sessions, and revisit earlier
content, which can be burdensome for learners. To address this,
we propose implementing systems that allow users to easily ac-
cess and navigate their learning histories in a more efficient and
visually intuitive way, rather than relying on tedious scrolling. A
clear, summarized overview of previous interactions, such as visual
timelines or knowledge maps (e.g., tree-based structure), could help
learners reference past material and seamlessly integrate it into
their ongoing search and learning processes. Such tools would not
only support better recall but also enhance continuity between
sessions, enabling users to build upon previous knowledge more
effectively.

7.2.3 Visualization of progress. Higher-competence learners tend
to be driven by intrinsic motivation, which fosters self-directed,
deeper learning. In contrast, lower-competence learners often rely
more on externalmotivation, which explains theirmore task-oriented
behavior. For these learners, seeing clear, tangible signs of progress
is crucial for feeling a sense of accomplishment and learning gain.
This is partly because reflective and integrative search strategies
pose significant challenges for them. Therefore, a tool that visual-
izes their learning progress could be highly beneficial. By providing
visual indicators of progress—such as milestones achieved, time
spent on tasks, or key concepts covered—such a system would of-
fer immediate feedback, helping learners gauge their performance.
Research has shown that progress visualization not only boosts
engagement but also fosters a sense of control over the learning
process, making it easier for learners to overcome the difficulty
of self-directed search and learning approaches. This would help
guide them toward more productive and reflective learning be-
haviors, while easing the cognitive burden of tracking their own
development.

7.3 Towards the Complementarity of Search
Engines and LLMs

With the emergence of tools like Perplexity AI and Search GPT,
integrating web search engines with LLMs offers a way to enhance
both the reliability and efficiency of information retrieval. While
LLMs can generate nuanced responses and assist with query for-
mulation, they are prone to inaccuracies. In contrast, web search
engines provide verifiable and traceable results. By combining the
two, we can leverage the LLMs for generating and refining search
prompts, while using search engines to ensure the information
retrieved is accurate and reliable.

To maximize the benefits of this hybrid approach, users must de-
velop strong prompt formulation skills, as crafting effective queries
can deepen cognitive engagement and learning. Future systems
that blend LLM-generated suggestions with reliable search engine
results could help guide users toward more accurate and reflec-
tive search behaviors, enhancing both learning and information
accuracy.

7.4 Limitations and Future Work
First, our study was not conducted longitudinally, which may have
limited our ability to fully capture the modality’s characteristics
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and more natural student usage within a 40-minute session. In
particular, we may not have fully observed the advantages of using
resources that require longer study times, such as textbooks. Future
work could involve observing long-term usage patterns to address
this limitation.

Second, our study was limited to a university-level STEM course,
which focused on structured, fact-based content. This may have
reduced the likelihood of encountering issues like hallucination or
misinformation, which could be more prevalent in subjects that
involve complex interpretations (e.g., humanities) or requires state-
of-the-art knowledge not shared in the web (e.g., state-of-the-art
semiconductor processing technology). Future work should explore
LLM performance in a broader range of subjects, including the
humanities, to better assess reliability and knowledge accuracy
across diverse fields.

Third, while we conducted a large-scale study, our participants
were limited to university students. This may limit the general-
izability of our findings to learners with different purposes or at
more advanced levels. Future work should expand the demographic
diversity of the participant pool.

Lastly, while our study focused on GPT-based LLM chatbots,
this was aligned with our objective to examine how LLMs facilitate
autonomous learning and information retrieval in a structured,
interactive format. However, as advanced hybrid search tools that
combine LLMs with traditional search engines continue to emerge,
it will be important to evaluate whether these technologies address
the limitations of existing systems. Future work should explore
the effectiveness of these advanced tools and whether educator
concerns, particularly regarding reliability and educational impact,
persist in the evolving landscape of LLM-based learning systems.

8 CONCLUSION
This study examines whether the changes in learning processes
brought by LLMs, such as GPT, are negative, as some educators fear,
or have a positive impact. To explore this, educators were surveyed
on LLM-assisted learning, which revealed a two-dimensional model
that explains how specific factors of search tools interact with ed-
ucators’ expectations for successful search-as-learning. Through
a three-day experiment with university students using multiple
learning sources, we investigate the impact of learning tools with
different level of automation on students’ learning outcomes. Par-
ticipants created concept maps, completed MCQs, and provided
feedback on each tool. The findings suggest LLM-based chatbots
effectively support the acquisition and connection of key concepts
without sacrificing accuracy or engagement. Despite educators’
concerns, LLMs promote active learning comparable to traditional
sources, although books performed better in long-term retention.
Based on these results, we propose design implications for search-
learning tools that combine LLMs’ strengths in quick learning with
strategies for deeper comprehension and retention.
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A LEARNING OBJECTIVES
For the evaluation, the Understand, Apply, and Analyze categories
from the revised Bloom’s taxonomy were selected, except for Re-
member taxonomy which has already been used. The categories
were deemed suitable for assessment through MCQs, while higher-
level taxonomies like Evaluate and Create were excluded due to the
challenge they pose within the 40-minute learning period. Three
learning objectives per module are detailed in Table 4.

Solar System Sampling DBMS

LO 1
Define and classify planets
and dwarf planets.

Define the concept of sam-
pling.

Define the concepts of
databases and tables.

LO 2
Explain the properties and
characteristics of planets
in the Solar System.

Explain and compare
probability sampling
and non-probability
sampling.

Explain and compare
RDBMS and non-
RDBMS.

LO 3
Apply Kepler’s Laws of
planetary motion.

Classify various probabil-
ity sampling techniques
and apply their formulas.

Apply CRUD operations
using MySQL with the ba-
sic syntax.

Table 4: When providing the learning objectives (LO), the
main keywords were highlighted using bold formatting.

B MCQ GENERATION
Multiple-choice questions (MCQs) were developed to evaluate the
learning outcomes of the experiment participants. A total of 27
questions were created, with 9 questions for each module, consist-
ing of 3 questions from each of the selected taxonomy (Appendix
A) categories. Most of the questions were designed to cover each
subject’s learning objectives (LO). According to previous studies,
generating MCQs through large language models (LLMs) is prefer-
able due to its time and cost efficiency, similar quality of results,
and alignment with Bloom’s taxonomy; therefore, the process was
conducted using ChatGPT-4o [60].

B.1 Prompts
As shown in Figure 13, a text-based prompt outlining the question
requirements was created and used, and to ensure format consis-
tency across different GPT sessions, an image containing the format
guidelines was included.

B.2 Quality Evaluation
The evaluation was conducted using two levels of metrics: question-
level [21] and quiz-level [21, 22]. 81 questions were generated, with
three times the required number for each subject. The MCQ set
was finalized through a three-step refinement process. Step 1) Four

authors cross-validated 81 initial questions using metrics as shown
in Table 5, and two authors further reviewed the questions for
alignment with learning objectives (LO) and taxonomy, removing
unsuitable ones. Step 2) Missing questions were regenerated and
re-evaluated using the same criteria, resulting in 9 questions per
subject (27 total). Step 3) Professors from relevant fields conducted a
final review based on criteria as shown in Table 6. In the evaluation
of Structure, Redundancy, and Usefulness, the following scores
were assigned: Astronomy (2, 3, 3), Sampling (3, 2, 3), and Database
(3, 2, 3).

B.3 Examples of MCQs

Figure 12: Three examples of post-test questions from the
DBMS module, categorized by each taxonomy (Understand,
Apply, and Analyze).
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Figure 13: Text (A) and images (B, C) were provided together to GPT-4. For the Modules | LOs and Taxonomy sections, only one
color was retained for each to match their respective purposes.
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Rubric item Question Options

M1 Fluency Is the language grammatically
correct and clear?

(1) Yes, it is written in grammatically correct and clear lan-
guage.
(2) No, it is not written in grammatically correct and clear
language.
(3) I am unsure.

M2 Correct answer

Does the correct answer appear
within the choices? If so, is the
option marked as correct the
right answer?

(1) Yes, the correct answer is present, and the option is
marked as the ’correct’ answer.
(2) The correct answer is present, but it is not marked as
the ’correct’ option.
(3) There are multiple correct answers.
(4) No, the correct answer is not present among the options.
(5) I am unsure.

M3 Unique choices Are the answer choices distinct
and unique from one another?

(1) Yes, the answer choices are completely distinct from one
another.
(2) Some choices are distinct, but others are too similar.
(3) No, they all seem similar and appear to overlap.
(4) I am unsure.

M4 No obviously
wrong choice

Are there any answer choices
that are incorrect or wrong?

(1) Yes, there are no incorrect answer choices.
(2) Yes, but the correct answer is too easy to infer.
(3) No, there are incorrect choices.
(4) I am unsure.

M5 Correct mate-
rial

If supplementary materials (e.g.,
code, formulas, images) are
included in the question or
choices, do they make sense
grammatically and logically?

(1) Yes, the supplementary materials are grammatically and
logically well-constructed.
(2) There are minor issues.
(3) No, the materials are incomprehensible.
(4) I am unsure.

M6 LO alignment
Does this question contribute
to achieving the learning objec-
tives?

(1) Yes, it contributes to achieving the learning objectives.
(2) It probably does, but there are significant gaps.
(3) No, it does not help achieve the learning objectives.
(4) I am unsure.

M7 Taxonomy
alignment

Is the question appropriately
aligned with the intended
Bloom’s taxonomy level?

(1) Yes, the question is aligned with the intended taxonomy.
(2) No, the question is unrelated to the intended taxonomy.
(3) I am unsure.

Table 5: The question-level metric was used to evaluate the appropriateness of the initial 81 questions and additional generated
questions, resulting in the selection of 27 questions. Each question underwent cross-evaluation by at least three authors.

Metric Definition Evaluation

Structure It measures whether the set of questions makes sense together. Ordinal metric (1–3)

Redundancy It measures if there is redundancy/repetition within the quiz Ordinal metric (1–3)

Usefulness It measures if a teacher would use the quiz in an assessment they
create for their own class. Ordinal metric (1–4)

Table 6: The quiz-level evaluation metric was used by subject matter experts to finalize the MCQ set. Each question was assessed
based on three criteria: Structure, Redundancy, and Usefulness.
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C Results of Concept Map Evaluation at Module

Figure 14: Results for the concept map evaluation at module level across five metrics.


	Abstract
	1 INTRODUCTION
	2 BACKGROUND AND RELATED WORK
	2.1 Search as Learning
	2.2 Large Language Models in Education
	2.3 Effective Information Searching Strategies

	3 EXPLORATORY STUDY 
	3.1 Statistical Analysis
	3.2 Two-Dimensional Model Shaping Effective Learning
	3.3 Goals and Research Questions

	4 METHODOLOGY
	4.1 Study Design
	4.2 Task Design and Setup
	4.3 Data Collection and Analysis
	4.4 Particpants and Procedure

	5 RESULTS
	5.1 RQ1: Accuracy and Comprehensive Coverage in Knowledge Building
	5.2 RQ2: Assessing Degree of Cognitive Engagement
	5.3 Summary

	6 EXPLORING THE IMPACT OF STUDENTS' COMPETENCE ON LLM-BASED SEARCH-AS-LEARNING
	6.1 Higher-Competence Students Exhibit Deeper Cognitive Investment and Retention
	6.2 High-Competence Students Prioritize Deep Reading, While Low-Competence Focus on Task Completion

	7 DISCUSSION
	7.1 The Promise of LLMs as a Starting Point for Search as Learning
	7.2 Design Implications Derived from Learner Competence Levels
	7.3 Towards the Complementarity of Search Engines and LLMs
	7.4 Limitations and Future Work

	8 CONCLUSION
	Acknowledgments
	References
	A LEARNING OBJECTIVES
	B MCQ GENERATION
	B.1 Prompts
	B.2 Quality Evaluation
	B.3 Examples of MCQs

	C Results of Concept Map Evaluation at Module

